博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Docker技术原理之Linux Cgroups(资源限制)
阅读量:4121 次
发布时间:2019-05-25

本文共 5191 字,大约阅读时间需要 17 分钟。

0.前言

首先要知道一个运行的容器,其实就是一个受到隔离和资源限制的Linux进程——对,它就是一个进程。前面我们讨论了Docker容器实现隔离用到的技术Linux namespace,本篇我们来讨论容器实现资源限制的技术 Linux CGroups。

1.关于Linux CGroups

Linux Cgroups的全称是Linux Control Groups。它最主要的作用,就是限制一个进程组能够使用的资源上限,包括CPU、内存、磁盘、网络带宽等等。此外,还能够对进程进行优先级设置,以及将进程挂起和恢复等操作。

在Linux中,Cgroups给用户暴露出来的操作接口是文件系统,即它以文件和目录的方式组织在操作系统的/sys/fs/cgroup路径下。在我的centos服务器下,用mount指令把它们展示出来:

//CentOS Linux release 7.5.1804$ mount -t cgroupcgroup on /sys/fs/cgroup/systemd type cgroup (rw,nosuid,nodev,noexec,relatime,xattr,release_agent=/usr/lib/systemd/systemd-cgroups-agent,name=systemd)cgroup on /sys/fs/cgroup/cpu,cpuacct type cgroup (rw,nosuid,nodev,noexec,relatime,cpuacct,cpu)cgroup on /sys/fs/cgroup/blkio type cgroup (rw,nosuid,nodev,noexec,relatime,blkio)cgroup on /sys/fs/cgroup/pids type cgroup (rw,nosuid,nodev,noexec,relatime,pids)cgroup on /sys/fs/cgroup/devices type cgroup (rw,nosuid,nodev,noexec,relatime,devices)cgroup on /sys/fs/cgroup/freezer type cgroup (rw,nosuid,nodev,noexec,relatime,freezer)cgroup on /sys/fs/cgroup/cpuset type cgroup (rw,nosuid,nodev,noexec,relatime,cpuset)cgroup on /sys/fs/cgroup/memory type cgroup (rw,nosuid,nodev,noexec,relatime,memory)cgroup on /sys/fs/cgroup/net_cls,net_prio type cgroup (rw,nosuid,nodev,noexec,relatime,net_prio,net_cls)cgroup on /sys/fs/cgroup/perf_event type cgroup (rw,nosuid,nodev,noexec,relatime,perf_event)cgroup on /sys/fs/cgroup/hugetlb type cgroup (rw,nosuid,nodev,noexec,relatime,hugetlb)

可以看到,在/sys/fs/cgroup下面有很多诸如cpuset、cpu、 memory这样的子目录,也叫子系统。这些都是我这台机器当前可以被Cgroups进行限制的资源种类。而在子系统对应的资源种类下,你就可以看到该类资源具体可以被限制的方法。比如,对CPU子系统来说,我们就可以看到如下几个配置文件:

$ ls /sys/fs/cgroup/cpucgroup.clone_children  cgroup.sane_behavior  cpu.rt_period_us   cpu.stat       cpuacct.usage_percpu  system.slicecgroup.event_control   cpu.cfs_period_us     cpu.rt_runtime_us  cpuacct.stat   notify_on_release     taskscgroup.procs           cpu.cfs_quota_us      cpu.shares         cpuacct.usage  release_agent         user.slice

2.举个例子(CPU限制)

1) 配置你的控制组

$ cd /sys/fs/cgroup/cpu$ mkdir testlimit$ ls testlimit/cgroup.clone_children  cgroup.procs       cpu.cfs_quota_us  cpu.rt_runtime_us  cpu.stat      cpuacct.usage         notify_on_releasecgroup.event_control   cpu.cfs_period_us  cpu.rt_period_us  cpu.shares         cpuacct.stat  cpuacct.usage_percpu  tasks$ cat /sys/fs/cgroup/cpu/testlimit/cpu.cfs_quota_us-1$ cat /sys/fs/cgroup/cpu/testlimit/cpu.cfs_period_us 100000

你创建的这个目录testlimit就称为一个“控制组”。你会发现,操作系统会在你新创建的目录下,自动生成该子系统对应的资源限制文件。可以看到testlimit控制组里的CPU quota还没有任何限制(即:-1),CPU period则是默认的100000us

配置一个只能使用30%cpu的限制,即长度为cfs_period的一段时间内,只能被分配到总量为cfs_quota的CPU时间。

$ echo 30000 > /sys/fs/cgroup/cpu/testlimit/cpu.cfs_quota_us

至此我们的testlimit控制组就配置好了,它限制进程在100000us里只能使用30000us的cpu时间。只是目前没有将它应用于任何进程。

2) 执行脚本

$ while : ; do : ; done &[1] 4477

该脚本执行了一个无限循环,可以把cpu吃到100%,可以看到它在后台的进程id是4477,后面限制的时候我们会用到。

通过top查看cpu使用情况:

%Cpu0  :100.0 us,  0.0 sy,  0.0 ni,  0.0 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st

3) 使用cgroups限制该进程的cpu

执行如下命令,使用刚才配置好的testlimit控制组,限制上面4477号进程的cpu:

$ echo 4477 > /sys/fs/cgroup/cpu/testlimit/tasks

再次通过top查看cpu使用情况:

%Cpu0  : 30.1 us,  3.0 sy,  0.0 ni, 65.5 id,  1.0 wa,  0.0 hi,  0.3 si,  0.0 st

可以看到使用刚才创建的testlimit控制组,将cpu被限制到了30%左右。

4) 启动一个容器加上CPU时钟周期限制

接下来,我们启动一个容器,并加上cpu限制,然后看看cgroups对应的目录里有没有该容器的限制。

$ docker run -td --cpu-period 100000 --cpu-quota 200000 busybox /bin/sh -c "while : ; do : ; done"c3e3fb30f3cbdcc707dff9f5937018c0ac6b07002d80656760026111c569ca4f//查看该容器的进程id: 26430$ ps -x |grep '/bin/sh'26430 pts/0    Rs+   20:52 /bin/sh -c while : ; do : ; done//查看cgroups$ cat /sys/fs/cgroup/cpu/docker/c3e3fb30f3cbdcc707dff9f5937018c0ac6b07002d80656760026111c569ca4f/cpu.cfs_period_us 100000$ cat /sys/fs/cgroup/cpu/docker/c3e3fb30f3cbdcc707dff9f5937018c0ac6b07002d80656760026111c569ca4f/cpu.cfs_quota_us 200000$ cat /sys/fs/cgroup/cpu/docker/c3e3fb30f3cbdcc707dff9f5937018c0ac6b07002d80656760026111c569ca4f/tasks 26430$ top%Cpu0  : 50.8 us, 49.2 sy,  0.0 ni,  0.0 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st

如上所示,可以通过启动容器时返回的容器ID在cgroups中找到对应的限制。

3.对照Docker源码

// New creates and initializes a new containerd serverfunc New(ctx context.Context, config *Config) (*Server, error) {	//...	if err := apply(ctx, config); err != nil {		return nil, err	}	//...}// apply sets config settings on the server processfunc apply(ctx context.Context, config *Config) error {	if config.OOMScore != 0 {		log.G(ctx).Debugf("changing OOM score to %d", config.OOMScore)		if err := sys.SetOOMScore(os.Getpid(), config.OOMScore); err != nil {			log.G(ctx).WithError(err).Errorf("failed to change OOM score to %d", config.OOMScore)		}	}	if config.Cgroup.Path != "" {		cg, err := cgroups.Load(cgroups.V1, cgroups.StaticPath(config.Cgroup.Path))		if err != nil {			if err != cgroups.ErrCgroupDeleted {				return err			}			if cg, err = cgroups.New(cgroups.V1, cgroups.StaticPath(config.Cgroup.Path), &specs.LinuxResources{}); err != nil {				return err			}		}		if err := cg.Add(cgroups.Process{			Pid: os.Getpid(),		}); err != nil {			return err		}	}	return nil}

在上面代码中,创建容器时会调用apply接口,里面的cgroups.Load调用就会去加载cgroups,cg.Add把创建的容器进程加入到cgroups task中。

4.下一代Linux Cgroups

在Kernel 3.16后,引入了一个叫__DEVEL__sane_behavior的特性(还在开发试验阶段),它可以把所有子系统都挂载到根层级下,只有叶子节点可以存在tasks,非叶子节点只进行资源控制。

参考

转载地址:http://jhtpi.baihongyu.com/

你可能感兴趣的文章
XML生成(一):DOM生成XML
查看>>
XML生成(三):JDOM生成
查看>>
Ubuntu Could not open lock file /var/lib/dpkg/lock - open (13:Permission denied)
查看>>
collect2: ld returned 1 exit status
查看>>
C#入门
查看>>
C#中ColorDialog需点两次确定才会退出的问题
查看>>
数据库
查看>>
nginx反代 499 502 bad gateway 和timeout
查看>>
linux虚拟机安装tar.gz版jdk步骤详解
查看>>
python猜拳游戏
查看>>
python实现100以内自然数之和,偶数之和
查看>>
python数字逆序输出及多个print输出在同一行
查看>>
苏宁产品经理面经
查看>>
百度产品经理群面
查看>>
去哪儿一面+平安科技二面+hr面+贝贝一面+二面产品面经
查看>>
element ui 弹窗在IE11中关闭时闪现问题修复
查看>>
vue 遍历对象并动态绑定在下拉列表中
查看>>
Vue动态生成el-checkbox点击无法选中的解决方法
查看>>
python __future__
查看>>
MySQL Tricks1
查看>>